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SUMMARY 

The incompressible, two-dimensional Navier-Stokes equations are solved by the finite element method 
(FEM) using a novel stream function/vorticity formulation. The no-slip solid walls boundary condition is 
applied by taking advantage of the simple implementation of natural boundary conditions in the FEM, 
eliminating the need for an iterative evaluation of wall vorticity formulae. In addition, with the proper choice 
of elements, a stable scheme is constructed allowing convergence to be achieved for all Reynolds numbers, 
from creeping to inviscid flow, without the traditional need for upwinding and its associated false diffusion. 
Solutions are presented for a variety of geometries. 
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INTRODUCTION 

Considerable effort has been devoted to methods for solving the two-dimensional Navier-Stokes 
equations. The problem is generally studied using formulations based on primitive variables 
(u, o,p),  stream function/vorticity (Y, w) or stream function alone. In this study a stream 
function/vorticity formulation is used. 

Traditional (Y, w) formulations impose the Dirichlet boundary condition of Y (no-penetration) 
on the stream function equation while iteratively applying approximate wall vorticity formulae to 
try to satisfy the no-slip condition. This approach is generally limited to low Reynolds number 
(Re) flows unless some form of upwinding and its associated false diffusion is introduced. 

Campion-Renson and Crochet’ have outlined a finite element method that solves the equations 
simultaneously, without the use of wall vorticity formulae. Their results were, however, only 
presented for Re up to 400 for the driven cavity problem and 50 for a forward facing step. 

Dhatt et al.’ developed a formulation in which the Dirichlet boundary condition is imposed 
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on the stream function equation while the vorticity transport equation is replaced by an explicit 
finite element approximation of the no-slip condition. Results were obtained for very high Re 
without the need for upwinding. It will be shown that their choice of element was the key to 
obtaining high Re solutions. 

In this paper we examine the linear problem of Stokes flow (Re  = 0), for which a variational 
principle exists, and show that the Dirichlet boundary condition on Y replaces the vorticity 
transport equation at solid walls while the no-slip condition is satisfied naturally by the stream 
function equation. The method, although paralleling the development of Campion-Renson and 
Crochet, is capable, with proper choices of elements and grids, of extending the solutions to all 
Reynolds numbers without the need for upwinding. 

The finite element method advantages are made even more evident in the solution of the 
pressure field. A Poisson type pressure equation is obtained by taking the divergence of the 
momentum equations. This formulation3 is somewhat different from those commonly found in the 
literature and leads to very simple boundary conditions, particularly suited to finite elements. 

Solutions are presented for the classical driven cavity problem as well as for more complex 
geometries, demonstrating the ease with which the method handles complex geometries. 

GOVERNING EQUATIONS 

For two-dimensional steady, incompressible, laminar flows, the vorticity is defined as 

w = v x u ,  (1) 

u being the velocity vector. The vorticity transport equation is obtained by taking the curl of the 
momentum equation. Defining a stream function Y such that 

u = a y l a y ;  = - aY/ax, 

ensures that continuity is automatically satisfied. The definition of vorticity in terms of stream 
function thus becomes 

V2Y + w = 0, 

V2w - Re(Y',w, - Y x w y )  = 0. 

(2) 

(3) 

and the vorticity transport equation is 

Equations (2) and (3) are the equations to be solved. 
The problem is solved in the domain D bounded by the curve C. C can be broken up into 

3 types C , ,  C,, C, .  C,  corresponds to solid walls where the velocity must be specified; thus Y 
and Yn are given. C, corresponds to the inlet where both Y and w are specified and C ,  corresponds 
to the exit where the streamwise derivatives of both Y and w are assumed to be zero. The boundary 
conditions are summarized as follows: 

(x, Y)EC,,  Y(X, Y )  = y ( s ) ,  'I'n(x, Y )  = q n ( s ) ,  (4a) 

( X , Y ) % ,  W , Y )  = WS), U ( X , Y )  = G(s), (4b) 

Figure 1 illustrates a typical problem exhibiting all three types of boundaries. 
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Figure 1. Boundary conditions on C , ,  C ,  and C ,  . 

FINITE ELEMENT FORMULATION 

Variational method for Stokes flow (Re  = 0). 

One of the major difficulties with (Y, w)  formulations is the boundary condition on solid walls 
(Cl). On this boundary there are two conditions on Y and none on w. To gain insight into how to 
deal with this problem it is instructive to outline the formulation for Stokes flow, for which a 
variational principle exists: 

I = j][ - (Vw).(VY) + $w2] do + w Y n  ds + Won ds. s s  ( 5 )  

Using Green’s theorem, equation (5)  can be rewritten as 

where a and s denote the solution domain and its outer boundary respectively. 
The solution for Stokes flow is obtained by finding the stationary value of equation (6a) or (6b). 

Taking the variation of (6a) with respect to w and (6b) with respect to Y and equating to the 
corresponding variations of (5 )  yields 

s h w [ V 2 Y  + w]  do = ss s [ - (Yx 6wx + Y,, 60,) + w 603 do + 6oYn ds, (74  

(7b) 6Y [V’O] do = - [o, 6Yx + o,, 6YY] do + GYw,ds. ss ss s 
The variations 6Y and 60 are arbitrary except that 

6Y = 0, when Y is specified; 
6w = 0, when w is specified. 

At solid wall boundaries Y is specified; thus equation (7b) becomes trivial since 6Y = 0, and is 
replaced by the Dirichlet condition Y = Y(s). 

The second boundary condition (Yn = Y,,(s)) is satisfied naturally by the contour integral of 
equation (7a). Note that since Yn(s) is usually equal to zero, satisfying the no-slip condition becomes 
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trivial. Note that, although it is not necessary for stability to reverse the classical boundary 
conditions between Y and o, this reversal makes the boundary condition very simple and contrasts 
with the method of Dhatt et al? in which an approximate explicit representation for Yn is needed, 
which could become cumbersome for complex geometries. 

Weighted residual method for viscous flows with convection 

apparent. The weighted residual equations are 
Guidelines for the weighted residual formulation for the non-linear problem now become 

W l [ V 2 0  - Re(Y,o,  - Y,o,)] do = 0, 

P P  

ss 
J J W,[o+V2Y]do=0, 

where W ,  and W ,  are weight functions. At solid wall boundaries equation (8a) must be dropped; 
thus W ,  must be zero at these boundaries, whereas there are no restrictions on W,. Equation (8a) 
is then replaced by the condition Y = T(s). Application of Green's theorem to equations (8) 
yields 

" "  n 

J-J[  Wlxw,  + W,,w, + W ,  Re(Y,w, - Y p , ) ]  do = W1wn ds = 0, J C3 
W,Yn ds. (9b) J C1 +C3 

[ W,O - W,,Y, - Wz,'€',] do = J J  
Using the Newton-Raphson method, the linearized equations for the changes in the variables 

A T  and Ao are 

{ W,Ao - W,,(AY), - W,,(AY),} do = - 1 ss CI + CJ 
Y n d s  + R , ,  (job) 

where R is the residual. Equations (10a) and (lob) are solved with the unknowns Y and o 
approximated as 

i i 

where N y  and N" are finite element shape functions and i is the number of degrees of freedom of the 
particular variable. 

Equations (10) are first solved for creeping flow (Re = 0) with high Re solutions obtained by 
incrementing the value of Re and using the solution at a lower value as the starting point. A relaxed 
convergence criterion is used at intermediate values of Re. 

Several elements (Figure 2) were tried. They were: 

1. 8-node element with 16 degrees of freedom (SY, So). 
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w 

16 DEGREES OF FREEDOM 12 DEGREES OF FREEDOM 8 DEGREES OF FREEDOM 

Figure 2. Elements used 

2. 8-node element with 12 degrees of freedom (8Y,40) 
3. 4-node element with 8 degrees of freedom (4Y, 40). 

With the first element, all shape functions and weight functions were quadratic; with the third 
element all shape functions and weight functions were linear; with the second element the shape 
function N" was linear whereas was quadratic, and two options were considered for the weight 
functions: W, quadratic and W, linear, or W, linear and W, quadratic. 

The pressure equation 

The components of the momentum equation written in terms of pressure are 

P x  = - [(u2), + (u4, - (1/Re)(VZu)1 -f, 
p y  = - [(u'), + (uu), - (1/Re)(v2u)] = g. 

By taking the divergence of these equations, the following equation for pressure results: 

This equation has, in the literature, been reduced to 

v2p  = 2(YxyYyy - Y:J. 

Various  method^^.^ have been used to solve for the pressure from either of these two equations. 
However, in the present work, we adopt a m e t h ~ d , ~  that leads to simple natural boundary 
conditions, demonstrating the advantages of a finite element formulation. 

The weighted residual integral for equation (1 3) is 

W{PXX - f x  + P y y  - sy> dxdy = 0 (15) ss 
Integrating the complete equation by parts yields 

JjlW,@,-f)+ Wy(P , -gW= W@,-f)dy 1- W(P,-ddX. s s (16) 

Note that the contour integrals just contain the momentum equations and thus vanish as a 
natural boundary condition in the finite element formulation. The pressure level is determined by 
setting the pressure equal to zero at one point on the inlet. Equation (16) is solved using standard 
techniques once the stream function is known. 
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RESULTS AND DISCUSSION 

Choice of element 

Tests were done initially to determine which elements and corresponding weight functions 
worked best. The test case was the rapidly diffusing duct shown in Figure 1.  At all but extremely 
low Re the flow would separate in such a duct. 

Unless otherwise noted, Re is based on the duct height and average velocity at the inlet. 
Figure 3 shows the convergence histories of two types of elements at R e  ranging from 0 to 100. 

The elements were the 16 degree of freedom (DOF) element and the 12 degree of freedom element 
with quadratic W ,  (Y'equation) and linear W ,  (o equation). The 12 D O F  elements with linear 
W, and quadratic W, never converged. The 8 DOF element was not considered until later in the 
study. The results indicate that the convergence properties of the 16 D O F  element deteriorate 
rapidly as the Reynolds number increases, almost going unstable at R e =  100. On the other 
hand, the 12 DOF element converges rapidly at all Reynolds numbers. For both cases an 
under-relaxation factor of 0.6 was found to yield the best convergence. 

Based on these initial tests, formulations using the 16 D O F  element and the 12 D O F  element 
with quadratic W ,  and linear W, were abandoned. 

Later in the study tests were performed with 8 D O F  elements and these were found to take the 
exact same number of iterations as the 12 D O F  elements for tests on the same grid. The results 
were, however, less accurate and the savings in computer time were not great; thus all results 
presented henceforth are with the 12 DOF element. 

It should be noted that Dhatt et a1.' also used the same 12 DOF element. No mention was made 
of any other elements tried. It is believed that this choice of element made possible the high R e  
solutions presented in that reference. 

Flow in a driven cavity 

Driven cavity flow is a classical problem studied by many researchers to determine the 
effectiveness of Navier-Stokes solvers. This problem features a square domain where the lid is 
moving and all other sides are stationary. 

Figure 4 shows equivorticity and streamline plots for Re = 400. Figure 5 shows centre-line 
velocities and includes the results of a number of other researchers as surveyed by Olson.6 

The results of the current study agree well with previous work. 

High Reynolds number separated flow 

The performance of the method at high Re was considered next. The geometry and grid used are 
shown in Figure 6; the flow at the inlet was fully developed. The flow will separate in the trough 
along the hub but will otherwise remain attached. Converged solutions were obtained for Reynolds 
numbers up to 100,000, although at such a Reynolds number the laminar solution has little 
physical significance. 

Plots of streamlines in the separated zone for Re = 10,000 are shown in Figure 7. The results 
look qualitatively correct, but even at this Reynolds number the flow would be turbulent. 

Inviscid limit 

The method was tested at Re = CO to demonstrate that there are no Reynolds number 
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STREAM FUNCTION VORTlClTY 

Figure 4. Streamlines and equivorticity lines for driven cavity, Re = 400 

U 
Figure 5. Centre-line velocities for driven cavity, Re = 400. 

I Range of solutions from Olson6 excluding high and low curves 
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Figure 6. Geometry and grid for high Re test 

25 

Figure 7. Streamlines in trough, Re = 10,OOO 

Figure 8. Geometry and grid for inviscid test case 
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restrictions on the algorithm and also to show that false diffusion is not inherent in the algorithm. 
The test geometry was the strongly curved and constricted duct shown in Figure 8. This geometry 
forces the flow to make several sharp turns and to accelerate and decelerate rapidly in succession. 
The inlet had a linear vorticity profile. With no false diffusion the profile at the exit of the duct 
should be identical to that at the inlet. Note that as mentioned in the finite element formulation 
section it is not necessary to reverse the imposition of the boundary conditions between \y and w. 
For the inviscid case therefore, in order to drop the no-slip condition, we impose the 
no-penetration condition directly on 'P. Figure 9 compares inlet and exit vorticity profiles. As 
can be seen the profiles are virtually identical. 

Pressure solutions 

Eight-node, isoparametric elements were used for this problem. Note that the right-hand side of 
(12) contains second derivatives of velocity, so three derivatives of stream function are required. 
Fortunately this term is divided by Re so for most problems of interest it is small. As a test case, fully 
developed flow through a duct was considered. The test was performed at low Re(150) to 
investigate if the coarse representation of the second derivatives of velocity would create a problem. 
Theoretical' and computed pressure coefficients, along the duct are presented in Figure 10. The 
agreement is quite good. 

Effect of grids 

The accuracy of the solutions obtained was, of course, dependent on the grid used. It was found 
that for very coarse grids the algorithm could diverge. As the grid was refined, converged solutions 
could be obtained, but sometimes these would be oscillatory, especially at high Re, in flows with 
large streamwise gradients. Further refinements would remove these oscillations. These observ- 
ations are similar to those noted in Reference 8. 
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0.0 1 I I I I I 1 1 1 1  

0.00 1 0.0 1 * 0.1 
- 
ReH 

1 .o 

Figure 10. Theoretical and computed pressure coefficients. Theoretical: Ap* = 3x*/Re, ;  p* = p / p  U*aug, x* = x / H ,  
H =(duct height)/2. 0 this study 
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CONCLUDING REMARKS 

The use of wall vorticity formulae for stream function/vorticity formulations of the Navier-Stokes 
equation is not necessary, as an analysis of Stokes flow shows that the no-slip boundary condition 
is satisfied naturally by the stream function equation, and the no-penetration condition replaces 
the vorticity transport equation, obviating the need for the traditional calculations of wall vorticity. 
This formulation gives accurate results at all Reynolds numbers provided certain elements are 
used. Specifically, linear interpolation for w is required, and either linear or quadratic interpolation 
for Y can be used. 

A novel pressure field calculation method was applied and it has been shown to be particularly 
suited to finite element formulations. 
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